Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645011

RESUMO

Rubisco is the primary CO 2 fixing enzyme of the biosphere yet has slow kinetics. The roles of evolution and chemical mechanism in constraining the sequence landscape of rubisco remain debated. In order to map sequence to function, we developed a massively parallel assay for rubisco using an engineered E. coli where enzyme function is coupled to growth. By assaying >99% of single amino acid mutants across CO 2 concentrations, we inferred enzyme velocity and CO 2 affinity for thousands of substitutions. We identified many highly conserved positions that tolerate mutation and rare mutations that improve CO 2 affinity. These data suggest that non-trivial kinetic improvements are readily accessible and provide a comprehensive sequence-to-function mapping for enzyme engineering efforts.

2.
Elife ; 122024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381041

RESUMO

Synthetic autotrophy is a promising avenue to sustainable bioproduction from CO2. Here, we use iterative laboratory evolution to generate several distinct autotrophic strains. Utilising this genetic diversity, we identify that just three mutations are sufficient for Escherichia coli to grow autotrophically, when introduced alongside non-native energy (formate dehydrogenase) and carbon-fixing (RuBisCO, phosphoribulokinase, carbonic anhydrase) modules. The mutated genes are involved in glycolysis (pgi), central-carbon regulation (crp), and RNA transcription (rpoB). The pgi mutation reduces the enzyme's activity, thereby stabilising the carbon-fixing cycle by capping a major branching flux. For the other two mutations, we observe down-regulation of several metabolic pathways and increased expression of native genes associated with the carbon-fixing module (rpiB) and the energy module (fdoGH), as well as an increased ratio of NADH/NAD+ - the cycle's electron-donor. This study demonstrates the malleability of metabolism and its capacity to switch trophic modes using only a small number of genetic changes and could facilitate transforming other heterotrophic organisms into autotrophs.


Assuntos
Escherichia coli , Pesquisa , Escherichia coli/genética , Processos Autotróficos , Carbono , Ciclo do Carbono/genética
3.
Biol Psychiatry ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579933

RESUMO

BACKGROUND: Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS: Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

4.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945487

RESUMO

BACKGROUND: Highly palatable food triggers behavioral alterations reminiscent of those induced by addictive drugs. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral effects and dendritic spine modifications in the NAc. We compared the translating mRNA in NAc neurons identified by the type of dopamine receptors they express, depending on the type of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn (Neurochondrin). RESULTS: Operant conditioning for highly palatable food increases motivation for food even in well-fed mice. In control mice, free access to regular or highly palatable food results in increased weight as compared to regular food only. Highly palatable food increases spine density in the NAc. In animals trained for highly palatable food, translating mRNAs are modified in NAc dopamine D2-receptor-expressing neurons, mostly corresponding to striatal projection neurons, but not in those expressing D1-receptors. Knock-out of Ncdn, an abundant down-regulated gene, opposes the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting down-regulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of mRNA alterations D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

5.
Mol Psychiatry ; 27(4): 2068-2079, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177825

RESUMO

Forebrain dopamine-sensitive (dopaminoceptive) neurons play a key role in movement, action selection, motivation, and working memory. Their activity is altered in Parkinson's disease, addiction, schizophrenia, and other conditions, and drugs that stimulate or antagonize dopamine receptors have major therapeutic applications. Yet, similarities and differences between the various neuronal populations sensitive to dopamine have not been systematically explored. To characterize them, we compared translating mRNAs in the dorsal striatum and nucleus accumbens neurons expressing D1 or D2 dopamine receptor and prefrontal cortex neurons expressing D1 receptor. We identified genome-wide cortico-striatal, striatal D1/D2 and dorso/ventral differences in the translating mRNA and isoform landscapes, which characterize dopaminoceptive neuronal populations. Expression patterns and network analyses identified novel transcription factors with presumptive roles in these differences. Prostaglandin E2 (PGE2) was a candidate upstream regulator in the dorsal striatum. We pharmacologically explored this hypothesis and showed that misoprostol, a PGE2 receptor agonist, decreased the excitability of D2 striatal projection neurons in slices, and diminished their activity in vivo during novel environment exploration. We found that misoprostol also modulates mouse behavior including by facilitating reversal learning. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns and regulation. It also reveals the unforeseen role of PGE2 in the striatum as a potential neuromodulator and an attractive therapeutic target.


Assuntos
Dinoprostona , Misoprostol , Animais , Corpo Estriado/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Éxons , Expressão Gênica , Camundongos , Misoprostol/metabolismo , Misoprostol/farmacologia , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo
6.
Front Synaptic Neurosci ; 13: 749001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690733

RESUMO

Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK's characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington's disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer's disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.

7.
Sci Rep ; 11(1): 16357, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381140

RESUMO

Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in the forebrain, especially in pyramidal neurons of the hippocampus. Previous reports suggested its role in hippocampal synaptic plasticity and spatial memory but with contradictory findings possibly due to experimental conditions. Here we address this issue and show that novel object location, a simple test of spatial memory induced by a single training session, is altered in Pyk2 KO mice and that re-expression of Pyk2 in the dorsal hippocampus corrects this deficit. Bilateral targeted deletion of Pyk2 in dorsal hippocampus CA1 region also alters novel object location. Long term potentiation (LTP) in CA1 is impaired in Pyk2 KO mice using a high frequency stimulation induction protocol but not with a theta burst protocol, explaining differences between previous reports. The same selective LTP alteration is observed in mice with Pyk2 deletion in dorsal hippocampus CA1 region. Thus, our results establish the role of Pyk2 in specific aspects of spatial memory and synaptic plasticity and show the dependence of the phenotype on the type of experiments used to reveal it. In combination with other studies, we provide evidence for a selective role of non-receptor tyrosine kinases in specific aspects of hippocampal neurons synaptic plasticity.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Quinase 2 de Adesão Focal/metabolismo , Plasticidade Neuronal/fisiologia , Memória Espacial/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Animais , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia
8.
EMBO J ; 39(18): e104081, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32500941

RESUMO

CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.


Assuntos
Mineração de Dados , Bases de Dados de Ácidos Nucleicos , Ribulose-Bifosfato Carboxilase , Isoenzimas/classificação , Isoenzimas/genética , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética
9.
Sci Rep ; 10(1): 6619, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313025

RESUMO

The striatum is critical for cocaine-induced locomotor responses. Although the role of D1 receptor-expressing neurons is established, underlying molecular pathways are not fully understood. We studied the role of Pyk2, a non-receptor, calcium-dependent protein-tyrosine kinase. The locomotor coordination and basal activity of Pyk2 knock-out mice were not altered and major striatal protein markers were normal. Cocaine injection increased Pyk2 tyrosine phosphorylation in mouse striatum. Pyk2-deficient mice displayed decreased locomotor response to acute cocaine injection. In contrast, locomotor sensitization and conditioned place preference were normal. Cocaine-activated ERK phosphorylation, a signaling pathway essential for these late responses, was unaltered. Conditional deletion of Pyk2 in the nucleus accumbens or in D1 neurons reproduced decreased locomotor response to cocaine, whereas deletion of Pyk2 in the dorsal striatum or in A2A receptor-expressing neurons did not. In mice lacking Pyk2 in D1-neurons locomotor response to D1 agonist SKF-81297, but not to an anticholinergic drug, was blunted. Our results identify Pyk2 as a regulator of acute locomotor responses to psychostimulants. They highlight the role of tyrosine phosphorylation pathways in striatal neurons and suggest that changes in Pyk2 expression or activation may alter specific responses to drugs of abuse, or possibly other behavioral responses linked to dopamine action.


Assuntos
Cocaína/efeitos adversos , Quinase 2 de Adesão Focal/metabolismo , Atividade Motora , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Antagonistas Colinérgicos/farmacologia , Condicionamento Clássico , Corpo Estriado/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo
10.
J Neurosci ; 39(13): 2441-2458, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30700530

RESUMO

It has been well documented that neurotrophins, including brain-derived neurotrophic factor (BDNF), are severely affected in Alzheimer's disease (AD), but their administration faces a myriad of technical challenges. Here we took advantage of the early astrogliosis observed in an amyloid mouse model of AD (5xFAD) and used it as an internal sensor to administer BDNF conditionally and locally. We first demonstrate the relevance of BDNF release from astrocytes by evaluating the effects of coculturing WT neurons and BDNF-deficient astrocytes. Next, we crossed 5xFAD mice with pGFAP:BDNF mice (only males were used) to create 5xFAD mice that overexpress BDNF when and where astrogliosis is initiated (5xF:pGB mice). We evaluated the behavioral phenotype of these mice. We first found that BDNF from astrocytes is crucial for dendrite outgrowth and spine number in cultured WT neurons. Double-mutant 5xF:pGB mice displayed improvements in cognitive tasks compared with 5xFAD littermates. In these mice, there was a rescue of BDNF/TrkB downstream signaling activity associated with an improvement of dendritic spine density and morphology. Clusters of synaptic markers, PSD-95 and synaptophysin, were also recovered in 5xF:pGB compared with 5xFAD mice as well as the number of presynaptic vesicles at excitatory synapses. Additionally, experimentally evoked LTP in vivo was increased in 5xF:pGB mice. The beneficial effects of conditional BDNF production and local delivery at the location of active neuropathology highlight the potential to use endogenous biomarkers with early onset, such as astrogliosis, as regulators of neurotrophic therapy in AD.SIGNIFICANCE STATEMENT Recent evidence places astrocytes as pivotal players during synaptic plasticity and memory processes. In the present work, we first provide evidence that astrocytes are essential for neuronal morphology via BDNF release. We then crossed transgenic mice (5xFAD mice) with the transgenic pGFAP-BDNF mice, which express BDNF under the GFAP promoter. The resultant double-mutant mice 5xF:pGB mice displayed a full rescue of hippocampal BDNF loss and related signaling compared with 5xFAD mice and a significant and specific improvement in all the evaluated cognitive tasks. These improvements did not correlate with amelioration of ß amyloid load or hippocampal adult neurogenesis rate but were accompanied by a dramatic recovery of structural and functional synaptic plasticity.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Plasticidade Neuronal , Doença de Alzheimer/complicações , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos
11.
Transl Psychiatry ; 9(1): 3, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30664624

RESUMO

Major depressive disorder (MDD) is a common disorder with a variety of symptoms including mood alterations, anhedonia, sleep and appetite disorders, and cognitive disturbances. Stressful life events are among the strongest risk factors for developing MDD. At the cellular level, chronic stress results in the modification of dendritic spine morphology and density. Here, we study the role of Pyk2 in the development of depressive-like symptoms induced by a model of chronic unpredictable mild stress (CUMS). Pyk2 is a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the forebrain principal neurons and involved in spine structure and density regulation. We show that Pyk2 knockout mice are less affected to anxiety-like and anhedonia-like phenotypes induced by the CUMS paradigm. Using region-specific knockout, we demonstrate that this phenotype is fully recapitulated by selective Pyk2 inactivation in the amygdala. We also show that in the absence of Pyk2 the spine alterations, PSD-95 clustering, and NMDA receptors changes induced by the CUMS paradigm are prevented. Our results reveal a possible role for Pyk2 in the response to stress and in synaptic markers expression and spine density regulation in the amygdala. We suggest that Pyk2 contributes to stress-induced responses through micro-structural changes and that its deficit may contribute to the resilience to chronic stress.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtorno Depressivo Maior/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Espinhas Dendríticas/metabolismo , Transtorno Depressivo Maior/etiologia , Modelos Animais de Doenças , Quinase 2 de Adesão Focal/genética , Camundongos , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Exp Neurol ; 307: 62-73, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29803828

RESUMO

Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in synaptic regulation. Human genetic studies associated PTK2B, the gene coding Pyk2, with risk for Alzheimer's disease (AD). We previously showed that Pyk2 is important for hippocampal function, plasticity, and spine structure. However, its potential role in AD is unknown. To address this question we used human brain samples and 5XFAD mice, an amyloid mouse model of AD expressing mutated human amyloid precursor protein and presenilin1. In the hippocampus of 5XFAD mice and in human AD patients' cortex and hippocampus, Pyk2 total levels were normal. However, Pyk2 Tyr-402 phosphorylation levels, reflecting its autophosphorylation-dependent activity, were reduced in 5XFAD mice at 8 months of age but not 3 months. We crossed these mice with Pyk2-/- mice to generate 5XFAD animals devoid of Pyk2. At 8 months the phenotype of 5XFAD x Pyk2-/- double mutant mice was not different from that of 5XFAD. In contrast, overexpression of Pyk2 in the hippocampus of 5XFAD mice, using adeno-associated virus, rescued autophosphorylated Pyk2 levels and improved synaptic markers and performance in several behavioral tasks. Both Pyk2-/- and 5XFAD mice showed an increase of potentially neurotoxic Src cleavage product, which was rescued by Pyk2 overexpression. Manipulating Pyk2 levels had only minor effects on Aß plaques, which were slightly decreased in hippocampus CA3 region of double mutant mice and increased following overexpression. Our results show that Pyk2 is not essential for the pathogenic effects of human amyloidogenic mutations in the 5XFAD mouse model. However, the slight decrease in plaque number observed in these mice in the absence of Pyk2 and their increase following Pyk2 overexpression suggest a contribution of this kinase in plaque formation. Importantly, a decreased function of Pyk2 was observed in 5XFAD mice, indicated by its decreased autophosphorylation and associated Src alterations. Overcoming this deficit by Pyk2 overexpression improved the behavioral and molecular phenotype of 5XFAD mice. Thus, our results in a mouse model of AD suggest that Pyk2 impairment may play a role in the symptoms of the disease.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Quinase 2 de Adesão Focal/biossíntese , Regulação Enzimológica da Expressão Gênica , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Animais , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Feminino , Quinase 2 de Adesão Focal/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Hipocampo/enzimologia , Hipocampo/patologia , Humanos , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Placa Amiloide/enzimologia , Placa Amiloide/genética , Placa Amiloide/patologia
13.
Nat Commun ; 8: 15592, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555636

RESUMO

The structure and function of spines and excitatory synapses are under the dynamic control of multiple signalling networks. Although tyrosine phosphorylation is involved, its regulation and importance are not well understood. Here we study the role of Pyk2, a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the hippocampus. Hippocampal-related learning and CA1 long-term potentiation are severely impaired in Pyk2-deficient mice and are associated with alterations in NMDA receptors, PSD-95 and dendritic spines. In cultured hippocampal neurons, Pyk2 has autophosphorylation-dependent and -independent roles in determining PSD-95 enrichment and spines density. Pyk2 levels are decreased in the hippocampus of individuals with Huntington and in the R6/1 mouse model of the disease. Normalizing Pyk2 levels in the hippocampus of R6/1 mice rescues memory deficits, spines pathology and PSD-95 localization. Our results reveal a role for Pyk2 in spine structure and synaptic function, and suggest that its deficit contributes to Huntington's disease cognitive impairments.


Assuntos
Transtornos Cognitivos/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Hipocampo/metabolismo , Doença de Huntington/metabolismo , Sinapses/metabolismo , Idoso , Alelos , Animais , Comportamento Animal , Encéfalo/fisiopatologia , Espinhas Dendríticas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Feminino , Humanos , Doença de Huntington/genética , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Pessoa de Meia-Idade , Fenótipo , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...